
PLASTICITY OF ANISOTROPIC MEDIA 

A. I. Chanyshev UDC 539.374 

Assume that in a rectangular Cartesian coordinate system x, y, z the stress-strain state 
of the medium is characterized by ssamnetrical tensors of rank 2, T o and Te, and the relations 
between the elastic deformations and stresses represent the generalized Hooke's law 

T~ : D ..  Tq, ( 1 )  

where D is the tensor of elastic compliances of rank 4. 

Let the tensors T i (here, the indices i and j everywhere assume the values i, ..., 6) 
form an orthonormal system of characteristic tensors of the tensor D, while i/%i are the 
characteristic values [i, 2]: 

D--T i = T~/%i, (Ti, Tj) = ~ij" 

We expand T o and Te with respect to the basis tensors Ti: 

It follows from (1)-(3) that 

T~::= EiT i, T o = SiT i. 

(2) 

(3) 

E i  = S i ] ~ i  . (4) 
We introduce the following definition. We shall refer to the axes in tensor space, de- 

termined by the basis tensors Ti, as the axes of anisotropy of the starting material. 

The anisotropy axes at the stage of elastic deformation of an element of the medium are 
determined by the values of the elastic compliances of the materials and do not depend on the 
values of the tensors T o and T e. 

We shall make the following basic assumption: The orientation of the anisotropy axes 
in tensor space also remains unchanged with the appearance of plastic deformations. 

In order to examine the variants of the theory of plastic flow, we must introduce into 
the analysis the tensors of increments of stresses, strains, and plastic deformations T&o , 
TAE , and TAEp, respectively. In the T i basis, we have 

T~ = ASiT~, TAs = AEIT~, TArp = AE'~T~, 

We shall investigate the possible cases. 

i. Case of Total Anisotropy. Assume that all characteristic values are different 

We shall examine the inequalities (4). If the anisotropic material deforms elastically, then 
the values of %i are constant and the dependences s~ = Si(E i) are linear (see Fig. i). When 

E? 
Fig. 1 
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some of the values of S i attain and exceed some values S~ 

IS~l~S? 
(S~ -- the finite or infinite yield point of the anisotropic material along the axis with 
unit vector Ti is established experimentally) plastic changes in the deformation E i will 
occur and the dependences s i = S~(Ei) will no longer be linear. The general form of the 
strain diagram S i = Si(E i) is shown in Fig. i. When the load is removed, we will assume, as 
usual, that the unloading followsan elastic law. 

The equations of the classical theories for one-dimensional situations are well known. 
They take into account both the isotropic and anisotropic nature of the hardening along the 
corresponding strain axes. We shall restrict ourselves here to the case of isotropic harden- 
ing, for which the basic equations of these theories have the following form: 

Deformation theory of plasticity 

__ C E~ -- s~/~, (5) 

where %c i = xCi(s i) is the intersecting modulus on the diagram S i =S~(E~); 

Theory of plastic flow 

~E~ = A s ~ / ~ ,  (6) 

where  ~Pi  = X P i ( S i )  i s  t h e  t a n g e n t i a l  modulus  on t h e  d i a g r a m  S~ =S~(E~); 

Theory of ideal plasticity 

IS~l =s~. (7) 

Equations (5)-(7) are valid under the conditions that SiAS i ~ 0 (summation is not im- 
plied!); if SiAS i ! 0, then elastic unloading will occur along the corresponding axes accord- 
ing to the law AE i=AS/~ r 

2. Case of Partial Isotropy. Assume that some of the characteristic values are equal: 

~k = ~m = "'" = ~km .. .(k ~ m ~ . . . ) .  

I n  t h i s  c a s e ,  f rom e q u a l i t i e s  (3) and (4) we f i n d  

E hTa +EmTm + "'" = (SkTk + SmTm + "")/%km"" (8) 

We shall call the subspace defined by the basis tensors Tk, Tm, ..., the isotropic sub- 
space. 

In the case of the usual Hooke's law (%1 = ... = %5 # %~) the isotropic subspace coin- 
cides with the deviator subspace. 

The construction of the equations of the classical theories in isotropic subspaces does 
not involve any difficulties. For clarity, we shall examine, for example, the case when 
%k = %m = %km. In this case the isotropic subspace is a plane of isotropy. 

We introduce the following tensors: 

t~ = E~T k ~ ~mTm, t~ = SkT h ~ SmT m. 

It follows from (8) that 

t = to/~h . 

We now i n t r o d u c e  t h e  p o l a r  c o o r d i n a t e s  o f  t h e  t e n s o r s  t ~  and t ~ :  

S h q- S~n, tg2Ohm = Sm/S ~. 

(9) 

It follows from the equality (9) that 

Ekm = Shm/~%m ' Qhr~ = Ohm" 
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If the anisotropic material is deformed elastically in the isotropy plane under examina- 
tion (there can be several isotropy planes), then Xkm is a constant and the dependence Skm = 
Shm(~m) is linear. When Skm attains and exceeds the yield stress, 

the dependence is no longer linear. The general form of the strain Skm : Shm(Ehm) is the 
same as in the figure. When the load is removed, we assume that the unloading follows an 
elastic law. 

We write down the equations of classical theories in the case under examination, assum- 
ing that the hardening has an isotropic character: 

Deformation theory of plasticity 

, t 8 = t./X~, (i0) 

where XCkm = XCkm(Skm) is the intersecting modulus on the diagram skm = skm (~m) ~ obtained 
with a proportional load in the plane of isotropy; the tensor equality (i0) is equivalent to 
two scalar equalities: 

E -- C 
~m -- Skm/lkm" Qhm : Ohm; 

Theory of plastic flow 

tA~ p = to (t~ t.)  

w h e r e  XPkm = XPkm(Skm)  i s  t h e  t a n g e n t i a l  m o d u l u s  o n  t h e  c u r v e  Skm = S~m(E~m) ~ 
a proportional load in the isotropy plane; 

(ii) 

obtained with 

tA~ p = NEaTh + AB~Tm; tA~= AShT ~ + ASmTm; 

Theory of ideal plasticity 

Shin = S~, AE~/S~ = AEGIS m. (12) 

Equations (10)-(12) are valid under the condition that (tAo , to) ~ 0; if (tAg, t o ) j 0, then 
the elastic unloading obeys the law the = tho/%km. 

Various other models of complex loading can be examined in the isotropy planes analogous- 
ly to [3-6]; the condition Skm = S~ is approximated by piecewise linear surfaces. 

We note that if the set of characteristic values consists of simple and multiple roots, 
then the system of equations describing elastoplastic deformation of the anisotropic medium 
is a combination of systems of equations of two types: systems of equations describing the 
process of deformation along corresponding anisotropy axes (the construction is performed as 
in case i), and systems of equations describing the deformation in corresponding isotropic 
subspaces. 

3. Case of Complete Isotropy. Assume that all roots are equal: 

~I = %2 ... : 16. 

Case 3 is obviously a particular case of case 2, and the construction of the equations 
of the classical theory of plasticity here is entirely analogous to the preceding case. In 
case 3 the entire space examined will be isotropic. 

We note in conclusion that most elastoplastic models are written in the form 

TA~ = D "-T a~, 

so that the analysis presented above can be used to reject some of the existing models and 
to construct new ones. 
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FLEXURAL--GRAVITATIONAL WAVES FROM MOVING DISTURBANCES 

A. E. Bukatov, L. V. Cherkesov, and A. A. Yaroshenko UDC 532.593:539.3 

We investigate propagating flexural--gravitational waves, generated under the action of 
a load moving over the surface of a floating elastic plate, found in a state of uniform ex- 
tension or compression. Without account of extension or compression stresses, flexural-- 
gravitational propagating waves were considered in [I, 2]. Planar waves were investigated 
in [3, 4] under conditions of longitudinal compression. 

I. Let a thin, isotropic, elastic plate float on the surface of an ideal, incompres- 
sible liquid of finite depth H. The plate and the liquid are not restricted in their hori- 
zontal stresses. The plate is displaced across the surface with a velocity v of the loading 
p = pof(x:, y), xt = x + vt. Consider the effect of a uniform extension on the generated 
flexural--gravitational marine wave, assuming that the liquid motion is a potential flow, and 
that the velocities of the liquid particle motion and of the plate deflection g are low. 

Taking into account uniform extension [5-7] in a coordinate system xt, y, related to the 
moving pressure region, the problem reduces to solving the Laplace equation for the velocity 
potential 

A~: 0, - - H < z < O ,  --oo <x. y <  oo 

with boundary conditions 

v a~ 
a2~ +~+ F ax -ptl(x,y) at O l V ~  - -  Q1Az~ + ~1 v~ ax--- T 

a (~ /az=O at z =  --H, 

( i . i )  

z : 0 ,  ( 1 . 2 )  

where 

D1 = D/pg, Qt = Q/pg, x l  = pth/pg, D = E ~ / [ i 2 ( i  - -  ~ ) ] ,  Pi = Po/Pg, 

V 4 =  a~, A z = O~/ax~+ a~/ay 2, 

p, liquid density; E, h, Pt, and p, respectively, the normal elastic modulus, the width, den- 
sity, and Poisson coefficient of the plate; Q, extension stress; ~ and 9, related by the math- 
ematical condition 9z = v{x at z = 0. From here on the subscript 1 of x~ will be omitted. 

Applying a Fourier transform in horizontal coordinates to solve the problem (i.i), (1.2), 
we obtain, in the case of an axisymmetric load, an integral representation for the plate de- 
flection (raising the plate-liquid surface): 

{i+ 1 ~---- ~ - P l R e  ] (r) M (r) d" (r, R,  ?) dr ; 

~0 

(1.3) 
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